Ecole Doctorale
SCIENCES POUR L'INGENIEUR : Mécanique, Physique, Micro et Nanoélectronique
Spécialité
Sciences pour l'ingénieur : spécialité Mécanique et Physique des Fluides
Etablissement
Aix-Marseille Université
Mots Clés
fluides en rotation,couches de cisaillement internes,Analyse asymptotique,calcul haute performance,
Keywords
rotating fluids,internal shear layers,asymptotic analysis,high-performance computing,
Titre de thèse
couches de cisaillement internes dans les fluides en rotation: analyses asymptotiques et numériques
internal shear layers in rotating fluids: asymptotic and numerical analyses
Date
Vendredi 29 Septembre 2023 à 14:00
Adresse
Institut de Recherche sur les Phénomènes Hors Equilibre (IRPHE)
Technopole de Chateau-Gombert
49, rue Frédéric Joliot-Curie
F-13013 Marseille
FRANCE Seminar room
Jury
Rapporteur |
M. Leo MAAS |
IMAU, Utrecht University |
Rapporteur |
M. Nathanaël SCHAEFFER |
ISTerre, Université Grenoble Alpes |
Président |
M. Gordon OGILVIE |
DAMTP, University of Cambridge |
Examinateur |
Mme Florence MARCOTTE |
LJAD, Université Nice Côte d'Azur |
Directeur de these |
M. Stéphane LE DIZES |
IRPHE, Aix-Marseille Université |
CoDirecteur de these |
M. Benjamin FAVIER |
IRPHE, Aix-Marseille Université |
Résumé de la thèse
Les couches de cisaillement internes dans les fluides en rotation sont de fines structures visqueuses, associées à des singularités inviscides sous-jacentes. Cette thèse vise à construire une description asymptotique des couches de cisaillement internes à l'intérieur de coquilles sphériques tridimensionnelles et d'anneaux cylindriques bidimensionnels obtenus par des forçages harmoniques visqueux et inviscides, dans la limite des petits nombres d'Ekman. Les solutions asymptotiques sont comparées aux résultats obtenus par l'intégration numériques des équations linéarisées harmoniques pour des nombres d'Ekman proches de ceux des applications géophysiques (de l'ordre de $10^{-11}$). Un code spectral efficace a été développé en utilisant l'algorithme en bloc de Thomas qui est adapté aux systèmes tridiagonaux par bloc.
Les solutions asymptotiques sont construites en utilisant les solutions auto-similaires visqueuses de Moore & Saffman.
Les singularités de la latitude critique et des attracteurs conduisent à deux solutions de similitude, avec un index caractérisant la singularité et une amplitude différents.
Elles sont appliquées pour construire des solutions asymptotiques de deux modèles d'ondes de couches de cisaillement internes, à savoir les orbites périodiques et les attracteurs.
Il est constaté que les solutions asymptotiques donnent des résultats satisfaisants, dont certains sont excellents.
Plus important encore, toutes les prévisions asymptotiques concernant les lois d'échelle en nombre dEkman sont confirmées par les résultats numériques.
Thesis resume
Internal shear layers in rotating fluids are fine viscous structures, associated with underlying inviscid singularities.
This thesis aims to build asymptotic descriptions of internal shear layers inside three-dimensional spherical shells and two-dimensional cylindrical annuli forced by time-harmonic viscous and inviscid forcings, in the small-Ekman-number limit.
The asymptotic solutions are compared to numerical results obtained by integrating the harmonic linearised equations for small Ekman numbers relevant to geophysical applications (such as $10^{-11}$).
Efficient spectral codes are thus developed based on the block Thomas algorithm typical to a block tridiagonal system.
The asymptotic solutions are based on the viscous self-similar solutions of Moore & Saffman function.
Different singularities of the critical latitude and attractors lead to two similarity solutions, differing in singularity strength and amplitudes.
They are applied to building asymptotic solutions of two wave patterns of internal shear layers, namely periodic orbits and attractors.
It is found that the asymptotic solutions yield satisfactory results, some of which are excellent.
More importantly, all the asymptotic predictions on the Ekman number scalings of the amplitudes are recovered in numerical results.